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We present a microscopic derivation of self-consistent equations of Anderson localization in a disordered
medium of finite size. The derivation leads to a renormalized, position-dependent diffusion coefficient. The
position dependence of the latter is due to the position dependence of return probability in a bounded medium.
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I. INTRODUCTION

The phenomenon of Anderson localization �1� has been
studied both experimentally and theoretically for a half a
century �2–4�. It takes place for waves in strongly disordered
media when interference effects become plethoric in the mul-
tiple scattering process. Theoretical description of Anderson
localization reached a decisive stage in the 1980s with the
self-consistent �SC� theory of Vollhardt and Wölfle �5�. How-
ever, in its original form, this theory did not fully account for
finite-size effects. Later, Van Tiggelen et al. proposed a natu-
ral generalization of SC theory to media of finite size by
introducing a position-dependent diffusion coefficient D �6�.
This generalized SC theory has been recently used to study
the dynamics of Anderson localization in quasi-one-
dimensional �7� and three-dimensional �8� systems. Mean-
while, the generalized SC equations of Refs. �6–8�. have
never been derived microscopically. Such a derivation is
highly desirable for at least two reasons. First, our recent
results indicate that the position dependence of D is crucial
for the internal consistency of the theory itself and that some
of the important features of Anderson localization �such as
the 1 /L2 scaling of the transmission coefficient with the size
L of a disordered sample at the mobility edge� cannot be
reproduced without fully taking it into account �9�. Second,
the very fact that D should be position dependent can be
questioned in favor of momentum �10� or time �11� depen-
dencies studied in the past, unless the position dependence of
D is given a microscopic justification. This calls for a rigor-
ous derivation of SC equations in a medium of finite size,
showing the emergence of position-dependent D from micro-
scopic equations of wave propagation and clarifying the
physics behind it.

In this paper we present a derivation of SC equations of
localization in a finite medium of size L much exceeding the
two main “microscopic” length scales of the problem: the
wavelength � and the mean free path � due to disorder. Our
derivation is based on the “Hikami box” formalism �12,13�.
We work in the framework of classical wave scattering, but
our results can be extended to quantum particles �e.g., an
electron or an atom at low temperatures� described by

Schrödinger equation with a disordered potential. Whereas
electronic properties of disordered systems have been a sub-
ject of intense studies over several decades �1,5,10–17�, the
behavior of coherent atomic ensembles �Bose-Einstein con-
densates� in disordered optical lattices has come into focus
only recently �18–21�.

Mathematically, the finiteness of the medium comes into
play when we evaluate interference corrections to the sum of
ladder diagrams. These interference corrections are due to
infinite series of maximally crossed diagrams that we insert
inside the ladders. In the presence of time-reversal invari-
ance, the final result depends on the probability for the wave
�or quantum particle� to return back to a given point r.
Whereas, due to the translational and rotational invariance,
this return probability is a position-independent quantity in
the infinite medium, it becomes position dependent in a me-
dium of finite size. In an open medium, the return probability
decreases when the boundary of the medium is approached
because of the increased probability for the wave to leave the
medium through the boundary. This leads to a position-
dependent renormalized diffusion coefficient D, the renor-
malization being less important near the boundaries of the
disordered medium. The dependence of D on r is not known
in advance, but has to be determined self-consistently by
solving a diffusion equation containing the same D.

Anderson localization is often defined as an asymptotic
property of eigenstates of disordered wave �Schrödinger,
Helmholtz, etc.� equations. The states are said �exponen-
tially� localized if their intensity decays exponentially at
large distances. Another widespread definition of Anderson
localization is vanishing of the diffusion coefficient �4�.
Strictly speaking, none of these definitions can be directly
applied in open media of finite size, which were a subject of
extensive work initiated by Thouless �2� and culminated in
the scaling theory of localization �17�. We are not intended to
give a review of this work here and the interested reader can
find more details in Refs. �2–4�. For our purposes it will be
sufficient to think of “Anderson localization in a medium of
finite size” as of an interference, wave phenomenon that
would give rise to “truly localized” states if the medium
were extended to infinity.

The paper is organized as follows. In Sec. II we review
SC theory of localization in infinite and finite media. The
main “building block” of our derivation—an “interference
loop” that we insert inside ladder diagrams to account for
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interference effects in the intensity Green’s function—is cal-
culated in Sec. III. In Sec. IV we sum an infinite series of
diagrams for the intensity Green’s function and obtain the SC
equations of localization. Section V is devoted to boundary
conditions and a discussion of energy conservation. Finally,
we summarize our main results and discuss their implica-
tions in Sec. VI. Technical details of calculations are col-
lected in four appendixes.

II. THEORETICAL FRAMEWORK

We consider propagation of a scalar, monochromatic
wave of circular frequency � in a disordered three-
dimensional medium of finite size. The amplitude Green’s
function G�r ,r� ,�� obeys the Helmholtz equation

��r + k2�1 + ��r���G�r,r�,�� = ��r − r�� . �1�

Here ��r�=���r� / �̄ is the relative fluctuation of the dielectric
constant ��r�= �̄+���r�, �̄ is the average dielectric constant,
k=��̄� /c is the wave number, and c is the speed of wave in
a homogeneous medium with �=1 �vacuum�. We assume
that ��r� obeys the white-noise Gaussian statistics

k4���r���r��	 =
4�

�
��r − r�� , �2�

where angular brackets denote averaging over realizations of
disorder and � is the scattering mean free path. The average
amplitude Green’s function can be calculated assuming weak
disorder �k��1� �3�:

�G�r,r�,��	 = −
1

4�
r − r�

exp�ik
r − r�
 −


r − r�

2�

� . �3�

Although this result has been obtained for the infinite me-
dium, it holds in a medium of finite size as well, provided
that the points r and r� are at least one mean free path from
the boundaries.

In this paper we will be interested in the average intensity
Green’s function

C�r,r�,	� =
4�

c
�G�r,r�,�1�G��r,r�,�2�	 , �4�

where �1=�0+	 /2, �2=�0−	 /2, and we omit the depen-
dence of C on the carrier frequency �0. We assume the latter
to be fixed in the remainder of the paper. Physically, the
Fourier transform C�r ,r� , t− t�� of Eq. �4� describes the den-
sity of wave energy at r at time t due to a short pulse emitted
at time t� by a point source at r�. For a quantum particle, C
can be interpreted as a probability density of finding the
particle in the vicinity of point r at time t, provided that the
particle was at r� at time t� �“probability of quantum diffu-
sion”� �14�.

The analysis of the intensity Green’s function is generally
complicated and relatively simple results can be obtained
only for weak disorder �k��1� at large spatial scales �
r
−r�
��� and for slow dynamics �	
�0, c /��. Under these
assumptions, one derives the diffusion equation for the inten-
sity Green’s function �3,14�

�− i	 − DB�r�C�r,r�,	� = ��r − r�� , �5�

where DB=c� /3 is the Boltzmann diffusion coefficient. This
equation holds in the infinite as well as in finite media, pro-
vided that it is supplemented with appropriate boundary con-
ditions �3,14,22� in the latter case. Obviously, Eq. �5� ignores
interference effects and treats the wave as a classical particle
that propagates through a disordered medium by diffusion.
Vollhardt and Wölfle �5� have shown that interference effects
lead to a renormalization of DB in Eq. �5�. The renormalized
diffusion coefficient D�	� obeys �30�:

1

D�	�
=

1

DB
+

6�

k2�

 dQ

�2��3

1

− i	 + D�	�Q2 . �6�

In three dimensions, the integral over Q exhibits an ultravio-
let divergence arising from the failure of the diffusion Eq. �5�
at small length scales 
r−r�
��. This unphysical divergence
can be regularized by introducing an upper cutoff of integra-
tion Qmax�1 /�.

Although, strictly speaking, Eq. �5� with DB replaced by
D�	� can only be justified for k��1, the great success of
self-consistent Eqs. �5� and �6� is due to the fact that they
correctly describe many aspects of wave propagation in dis-
ordered media all the way down to k��1 �mobility edge�
and even at k��1 �Anderson localized regime�. In a disor-
dered metal, for example, where the quantity of interest is
the dynamic conductivity ��	�
D�	�, these equations yield
the weak localization effect ��0�
1−const / �k��2, the low-
frequency behavior of conductivity at the mobility edge
��	�
 �−i	�1/3 and in the localized �i.e., insulating� phase
��	�
−i	�2 �15�. However, not all the results obtained in
the framework of SC theory are correct. As an example, we
mention the critical exponent � describing the divergence of
localization length � with k�−1: �
 
k�−1
−�. SC theory
yields �=1, whereas numerical simulations suggest ��1.5
�16�. Another shortcoming of SC theory is its inapplicability
to systems with broken time-reversal symmetry.

The derivation of Eq. �6� heavily relies on the transla-
tional invariance and cannot be straightforwardly generalized
to media of finite size, even when the size L of the medium
is much larger than � and �. To some extent, Eq. �5� with DB
replaced by D�	� can still be used to study media of finite
size by using a lower cutoff �1 /L in the integral over Q in
Eq. �6� �5�. Such an approach can be more or less successful
in making qualitative predictions in the spirit of the scaling
theory of localization �17�, but it becomes insufficient when
one is interested in fine details of multiple wave scattering
close to the mobility edge and in the localized regime: co-
herent backscattering cone �6�, dynamics of short pulses
�7,8�, or precise scaling of the transmission coefficient with
the size of disordered sample �9�. A plausible generalization
of SC theory to media of finite size can be obtained by no-
ticing that, by virtue of Eq. �5�, the Q integral of Eq. �6� is
formally equal to the “return probability” C�r ,r ,	�. We
can therefore rewrite Eq. �6� as 1 /D�	�=1 /DB
+6� / �k2��C�r ,r ,	�. Van Tiggelen et al. conjectured �6� that
in this new form the self-consistent equation for D might
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hold in a medium of finite size as well. In a medium of finite
size, the position dependence of C�r ,r ,	� naturally gives
rise to a position dependence of D:

1

D�r,	�
=

1

DB
+

6�

k2�
C�r,r,	� . �7�

If we then enforce diffusive behavior of the intensity Green’s
function and insist on the energy conservation, the equation
for C becomes �6�

�− i	 − �r · D�r,	��r�C�r,r�,	� = ��r − r�� . �8�

Although SC Eqs. �7� and �8� appear to be a powerful tool
to study Anderson localization in realistic situations �6–9�,
they still remain a conjecture and lack microscopic justifica-
tion. Derivation of these equations from the first principles is
the main purpose of the present paper.

III. INTERFERENCE EFFECTS IN FINITE MEDIA

Formally, the intensity Green’s function is given by �23�

C�r,r�,	� =
4�

c
�G�r,r�,�1�	�G��r,r�,�2�	

+
4�

c

 dr1dr2dr3dr4�G�r,r1,�1�	

��G��r,r3,�2�	��r1,r2,r3,r4,	��G�r2,r�,�1�	

��G��r4,r�,�2�	 , �9�

where ��r1 ,r2 ,r3 ,r4 ,	� is the complete vertex function
given by a sum of all diagrams connecting scattering paths
corresponding to G and G�. The first term �G	�G�	 on the
right-hand side �RHS� of Eq. �9� will be neglected in the
following. Indeed, it is exponentially small at large distances

r−r�
�� that are of main interest for us here.

In the regime of weak disorder, defined by k��1,
��r1 ,r2 ,r3 ,r4 ,	�=��r1−r3���r2−r4��D�r1 ,r2 ,	� with �D
a sum of ladder diagrams �3,5,14� shown in Fig. 1�a�. We

denote C given by Eq. �9� with �D substituted for � by CD.
At large distances 
r−r�
�� and in the limit of small 	, CD
obeys the diffusion Eq. �5�. We also introduce a sum of
maximally crossed diagrams �C�r1 ,r2 ,	� shown in Fig.
1�b�. If we do not consider the first term on the RHS of Fig.
1�a�, we can formally obtain �C from �D by rotating the
bottom propagation line of the diagram of Fig. 1�a� by 180°
in the plane perpendicular to the plane of the figure. The
time-reversal invariance, that we assume to hold throughout
this paper, implies �C�r1 ,r2 ,	�=�D�r1 ,r2 ,	� if 
r1−r2
 ex-
ceeds the correlation length of disorder �i.e., if r1�r2 for the
white-noise disorder that we consider here� because the first
term of Fig. 1�a� can be neglected in this case.

To account for interference effects during propagation, we
consider a loop-shaped diagram X�r ,r� ,	� shown in Fig. 2.
This diagram is made of a square diagram known as a four-
point Hikami box H�r ,r1 ,r� ,r2� �12,13� and of a sum of
maximally crossed diagrams �C�r1 ,r2 ,	� that we replace by
�D�r1 ,r2 ,	�, making use of time-reversal invariance

X�r,r�,	� =
 dr1dr2H�r,r1,r�,r2��D�r1,r2,	� . �10�

Because H is a local object having nonzero value only when
all four points r, r1, r�, and r2 are within a distance of order
� from each other, we can expand �D in series around r,
assuming that its spatial variations are small at the scale of �:

�D�r1,r2,	� � �1 + �r1 − r� · �r1
+ �r2 − r� · �r2

+
1

2
��r1 − r� · �r1

�2 +
1

2
��r2 − r� · �r2

�2

+ ¯��D
�r1,r2,	�
r1=r2=r. �11�

We will truncate this expansion to the first order and use the
reciprocity principle �D�r1 ,r2 ,	�=�D�r2 ,r1 ,	� that allows
us to rewrite Eq. �11� as

FIG. 1. �a� Sum of ladder diagrams �D�r1 ,r2 ,	� and �b� sum of
maximally crossed diagrams �C�r1 ,r2 ,	�. Solid and dashed lines
denote �G	 and �G�	, respectively. The dotted line symbolizes the
correlation function of disorder k4���r���r��	 given by Eq. �2�.
Crosses denote scattering events. Integrations over positions of all
internal scattering events are assumed. In all diagrams of this paper,
�G	 and �G�	 should be evaluated at frequencies �1=�0+	 /2 and
�2=�0−	 /2, respectively. We show this explicitly in panel �a� of
this figure only.

r r'

r1

r2

H

FIG. 2. The diagram X�r ,r� ,	� that we use to introduce inter-
ference effects in the calculation of intensity Green’s function.
This diagram is made of a four-point Hikami box
H�r ,r1 ,r� ,r2�—detailed in Appendix A—and of the sum of maxi-
mally crossed diagrams �C�r1 ,r2 ,	� shown by wavy lines connect-
ing r1 and r2.
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�D�r1,r2,	� � �1 +
1

2
�r1 + r2 − 2r� · �r��D�r,r,	� .

�12�

Substituting this into Eq. �10� we obtain

X�r,r�,	� = �H�r,r�� +
1

2
H f�r,r�� · �r��D�r,r,	� ,

�13�

with

H�r,r�� =
 dr1dr2H�r,r1,r�,r2� �14�

and

H f�r,r�� =
 dr1dr2�r1 + r2 − 2r�H�r,r1,r�,r2� . �15�

The first term on the RHS of Eq. �13� is the “usual” term
arising in the infinite medium as well �14�. The second term
on the RHS is nonzero only in a finite medium because
�D�r ,r ,	� is independent of r in the infinite medium. It will
be seen from the following that this term is of fundamental
importance for the derivation of self-consistent equations of
localization in a finite medium.

A calculation detailed in Appendix A gives

H f�r,r�� = − �r − r��H�r,r�� . �16�

Substituting Eq. �16� into Eq. �13� we obtain

X�r,r�,	� = H�r,r���1 −
1

2
�r − r�� · �r��D�r,r,	� .

�17�

For convenience of calculations, we introduce the difference
variable �r=r−r�, such that a given function f of r and r�

becomes a function f̃ of r and �r. In particular, H�r ,r��
becomes H̃��r� and does not depend on r �14�. Using the
new set of variables r and �r, we have �D�r ,r ,	�
= �̃D�r ,�r=0 ,	�. Equation �17� becomes

X̃�r,�r,	� = H̃��r��1 −
1

2
�r · �r��̃D�r,0,	� . �18�

We now take the Fourier transform of Eq. �18� with respect
to �r and consider the limit q→0. Because the Fourier

transform H̃�q� of H̃��r� is equal to DB�4q2 /8�ck2 in this
limit �14,24�, we obtain

X̃�r,q,	� =
− �4DB

8�ck2 ��iq�2 + �iq� · �r��̃D�r,0,	� . �19�

An approximate expression for X̃�r ,�r ,	� can then be ob-
tained by the inverse Fourier transform of Eq. �19� with re-
spect to q �see Appendix B�:

X̃�r,�r,	� =
− �4DB

8�ck2 ����r���r��

+ ���r���r�� · �r��̃D�r,0,	� . �20�

Because ��r���r�=�r��r−r�� and ��r���r�=�r��r−r��,
Eq. �20� can be rewritten in terms of the original variables r
and r� as

X�r,r�,	� =
− �4DB

8�ck2 �r · ��D�r,r,	��r���r − r�� . �21�

IV. DERIVATION OF SELF-CONSISTENT EQUATIONS

We will now use the diagram X of Fig. 2 analyzed in the
previous section to include interference effects in the calcu-
lation of intensity Green’s function C�r ,r� ,	�. To this end,
we insert the “interference loop” X in the sum of ladder
diagrams for CD and account for the possibility of having
multiple consecutive interference loops. This leads to an in-
finite series of diagrams shown in Fig. 3. This series can be
written analytically as

C�r,r�,	� = CD�r,r�,	� +
4�c

�2 
 CD�r,r1,	�X�r1,r2,	�

�CD�r2,r�,	�dr1dr2 + �4�c

�2 �2

�
 CD�r,r1,	�X�r1,r2,	�CD�r2,r3,	�

�X�r3,r4,	�CD�r4,r�,	�dr1dr2dr3dr4 + ¯ .

�22�

We now apply the operator −i	−DB�r to Eq. �22� and use
Eq. �5� for CD and Eq. �21� for X�r ,r��. This yields �see the
detailed calculation in Appendix C�

FIG. 3. Diagrammatic representation of an infinite series of diagrams contributing to the intensity Green’s function. The first term is the
sum of ladder diagrams. The second term is the sum of ladder diagrams with a single interference loop denoted by wavy lines and equal to
an infinite sum of maximally crossed diagrams. The next terms contain 2, 3, etc., consecutive interference loops. The ladder and the
maximally-crossed diagrams are joined together by a Hikami box detailed in Appendix A. The analytic representation of this diagrammatic
series is given by Eq. �22�.
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�− i	 − DB�r�C�r,r�,	�

= ��r − r�� −
�2DB

2k2 �r��D�r,r,	��rC�r,r�,	��

�23�

or

�− i	 − �r · �DB −
�2DB

2k2 �D�r,r,	���r�C�r,r�,	�

= ��r − r�� . �24�

As we demonstrate in Appendix D, �D is proportional to CD:
�D�r ,r ,	�= �4�c /�2�CD�r ,r ,	�. This allows us to define a
renormalized, position-dependent diffusion coefficient

D�r,	� = DB −
2�c

k2 DBCD�r,r,	� . �25�

and rewrite Eq. �24� as

�− i	 − �r · D�r,	��r�C�r,r�,	� = ��r − r�� . �26�

The last step consists in applying the self-consistency prin-
ciple �5�. This can be done by using D�r ,	� instead of DB
when calculating the second term on the RHS of Eq. �25�.
Diagrammatically, this procedure is equivalent to inserting
“secondary loops” in the loops shown by wavy lines in Fig.
3 and then inserting the same loops in these secondary loops,
etc., thus obtaining a sum of diagrams with an infinite se-
quence of loops inserted one inside the other. Physically, this
simply means that the same, self-consistent diffusion coeffi-
cient D�r ,	� should be used when we calculate the intensity
Green’s function C and the sum of maximally crossed dia-
grams �C. More specifically, we have to perform the follow-
ing replacements. �1� We replace DB by D in H�r ,r�� in Eq.
�17�, or equivalently in H�q�, such that DB is replaced by D
in the second term on the RHS of Eq. �25�. �2� We replace
DB by D in �D in Eq. �17�, which amounts to replace CD by
C in the second term on the RHS of Eq. �25�.

Equation �25� then becomes D�r ,	�=DB
− �2�c /k2�D�r ,	�C�r ,r ,	� or

1

D�r,	�
=

1

DB
+

6�

k2�
C�r,r,	� . �27�

This completes the derivation of self-consistent equations of
localization—Eqs. �26� and �27�—in a medium of finite size.

The solution of the diffusion Eq. �26� in three dimensions
diverges when r�→r: C�r ,r� ,	�
1 / 
r−r�
. This unphysi-
cal divergence poses potential problems in Eq. �27� that con-
tains C�r ,r ,	�. One possibility to regularize this divergence
is to represent C�r ,r� ,	� as a Fourier transform of
C�r ,q ,	�, where q is a variable conjugated to �r=r−r�,
and then cut off the integration over q at some qmax�1 /�.
The exact proportionality constant between qmax and 1 /� will
determine the exact position of the mobility edge k��1. It is
also possible to cut off only the integration over q�

= �qx ,qy�, leaving the integration over qz unrestricted. Such a
two-dimensional cutoff is easier to implement for the par-
ticular geometry of a disordered slab perpendicular to the z
axis �8,9�. As could be expected, the main qualitative fea-

tures of final results are largely insensitive to the details of
the large-q cutoff, although quantitative details can vary
slightly.

V. ENERGY CONSERVATION AND BOUNDARY
CONDITIONS

It is important to note that although we have obtained Eq.
�26� by summing only the diagrams of certain type and ne-
glecting many other diagrams, this equation satisfies the con-
servation of energy exactly. Indeed, let us take its inverse
Fourier transform with respect to 	:

�C�r,r�,t�
�t

−
 d	

2�
�r · D�r,	��rC�r,r�,	�e−i	t

= ��r − r����t� . �28�

The flux of energy is given by Fick’s law J�r ,r� , t�
=−�d	 / �2��D�r ,	��rC�r ,r� ,	�e−i	t. By integrating Eq.
�28� over a control volume V contained inside the disordered
medium and enclosed by a surface S, we obtain



V

�C�r,r�,t�
�t

dr = − 

V

�r · J�r,r�,t�dr + ��t�

V

��r − r��dr .

�29�

We now apply the Gauss-Ostrogradsky theorem to the first
term on the RHS of Eq. �29� and assume that the source
point r� is contained inside V:

d

dt



V

C�r,r�,t�dr = − �
S

J�r,r�,t�dS + ��t� . �30�

Here dS is a vector normal to the surface element dS and
directed outwards the volume V.

Equation �30� is a conservation equation. It states that the
variation of wave energy in the volume V is given by a
balance of energy emitted by the source �the second term on
the RHS� and energy leaving the volume through its surface
S �the first term on the RHS�.

Although inside a disordered medium the energy flux
J�r ,r� , t� can have arbitrary magnitude and direction consis-
tent with the diffusion Eq. �26� and Fick’s law, additional
factors come into play at the surface of the medium. More
specifically, for an open disordered medium of convex shape
surrounded by the free space, no energy flux enters the me-
dium from outside, provided that all sources are located in-
side the medium. This simple principle allows a derivation of
boundary conditions for the intensity Green’s function at the
surface of disordered medium. Following Zhu et al. �22�, we
consider a disordered medium occupying the half-space z
�0. At a given point r inside the medium, the Fourier com-
ponent of intensity I�u ,r ,r� ,	� propagating in the direction
of a unit vector u, can be represented as �14,22�
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I�u,r,r�,	� = C�r,r�,	� +
3

c
J�r,r�,	�u

= C�r,r�,	� −
3

c
D�r,	��rC�r,r�,	�u ,

�31�

where Fick’s law was used to obtain the second line. The
total flux of wave energy crossing some plane z=const at
point r in the positive direction of axis z is

J+�r,r�,	� =
c

4�



0

2�

d�

0

�/2

d� sin �uzI�u,r,r�,	� ,

�32�

where uz=cos � is the z component of u. We then substitute
Eq. �31� into Eq. �32� and perform integrations over � and �.
This yields

J+�r,r�,	� =
C�r,r�,	�c

4
−

D�r,	�
2

�C�r,r�,	�
�z

. �33�

By requiring J+�r ,r� ,	�=0 at the surface z=0 of the me-
dium, we obtain the following boundary condition:


C�r,r�,	�
z=0 −
2

c

D�r,	�
z=0� �C�r,r�,	�

�z
�

z=0
= 0.

�34�

For a medium of more complex but still convex shape, the
above derivation can be repeated locally in the vicinity of
each point of the medium surface S, assumed to be locally
flat. This yields

C�r,r�,	� −
2

3
�

D�r,	�
DB

�n�r� · ��C�r,r�,	� = 0, �35�

where n�r� is a unit inward normal to the surface S at the
point r�S. This equation is the boundary condition for the
intensity Green’s function at an open boundary. It can be
generalized to include internal reflections of waves at the
boundary by replacing 2� /3 by a larger “extrapolation
length” z0 in front of the second term on its left-hand side, in
complete analogy with Ref. �22�.

VI. CONCLUSION

In this paper we derived the self-consistent �SC� equations
of Anderson localization—Eqs. �26� and �27�—starting from
first principles. Mathematically, this was achieved by dress-
ing the ladder propagator with “interference loops” made of
maximally crossed diagrams. Each loop was inserted into the
ladder with the help of a Hikami-box diagram. The SC equa-
tions were then obtained by applying the self-consistency
principle.

The essential difference of our derivation compared to the
derivation of SC equations in the infinite medium is the po-
sition dependence of the sum of ladder diagrams �D�r ,r� ,	�
with coinciding end points r=r�. This position dependence
leads to the appearance of an additional term, proportional to

�r�D�r ,r ,	�, in a series expansion of �D�r1 ,r2 ,	� around
an arbitrary point r. As a consequence, we have to keep an
additional term in the expression of Hikami box employed to
connect ladder and maximally crossed diagrams in our ap-
proach. It is this term that finally allows us to derive SC
equations of localization in a medium of finite size.

Although the condition k��1 was explicitly used to de-
rive Eqs. �26� and �27�, one can still hope that, similarly to
SC equations in the infinite medium, they could yield rea-
sonable results in the vicinity of mobility edge and in the
localized regime. According to Refs. �6–9�, this seems in-
deed be the case. However, one should understand that even
though the general form of these equations might be largely
universal in both diffuse and localized regimes, the numeri-
cal prefactor 6� /k2� in front of the second term in the SC
equation for D�r ,	�, Eq. �27�, should not be taken too seri-
ously because it originates from the calculation of compli-
cated diagrams that was carried out in the limit k��1 only
�see Appendix A�. When the result is extrapolated to k��1,
this prefactor could vary and, in general, its dependence on
k� is likely to be more complex than just 1 / �k��2. In addi-
tion, the SC theory neglects interference processes insensi-
tive to the breakdown of time-reversal invariance by, e.g., a
strong magnetic field. The inclusion of such processes in the
theoretical description would at least change the prefactor in
Eq. �27�. In Refs. �7–9�, for example, a larger prefactor was
used in Eq. �27� to study the vicinity of the localization tran-
sition. This was justified by a comparison of some of the
final results with those of the supersymmetric � model �25�.
Such a comparison indicates that the prefactor 6� /k2� in Eq.
�27� have to be multiplied by 2 to obtain an exact correspon-
dence between the two theoretical approaches �7�.

Finally, SC theory of localization is a very convenient tool
for description of realistic experimental situations, such as
the recent experiments on Anderson localization of light
�26�, microwaves �27�, ultrasound �28�, and matter waves
�18,19�. It can be adapted to almost any detail of a particular
experiment �short pulses or focused beams, internal reflec-
tions on the sample surface, complex shapes, or inhomoge-
neous scatterer density profiles of disordered samples, etc.�.
This gives SC theory a serious advantage as compared to
other theories of Anderson localization.

Note added. After this paper was submitted for publica-
tion, we became aware of the work of Tian �29� who justifies
the concept of the position-dependent diffusion coefficient
using methods of supersymmetric field theory.
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APPENDIX A

In this appendix we present a demonstration of Eq. �16�.
Consider Eq. �15�, where the Hikami box H�r ,r1 ,r� ,r2� is
shown �Fig. 4�. This diagram is a sum of three contributions
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H�A��r ,r1 ,r� ,r2�, H�B��r ,r1 ,r� ,r2�, and H�C��r ,r1 ,r� ,r2�. We
hence have to perform three integrals. The second one, for
example, is

H f
�B��r,r�� =
 dr1dr2�r1 + r2 − 2r�H�B��r,r1,r�,r2� .

�A1�

The two other integrals H f
�A� and H f

�C� are defined similarly.
In the following we focus on the calculation of H f

�B�, the
calculation being similar for H f

�A� and H f
�C�. Equation �A1�

can be rewritten as

H f
�B��r,r�� =

4�

�

 dr1dr2dr3�r1 + r2 − 2r��G�r,r3�	

��G�r3,r1�	�G��r1,r��	�G��r,r2�	�G�r2,r3�	

��G�r3,r��	 . �A2�

In this appendix, we neglect the difference in frequencies �1
and �2 in the arguments of �G	 and �G�	, respectively, and
set �1=�2=�0 for all amplitude Green’s functions. This is
justified as far as slow dynamics �	=�1−�2
�0, c /�� is
concerned. To lighten the notation, we omit the frequency
argument of �G	.

By replacing the Green’s functions in Eq. �A2� by their
Fourier transforms, we obtain

H f
�B��r,r�� =

4�

��2��18
 dr1dr2dr3dk1 ¯ dk6�G�k1�	�G�k2�	

��G��k3�	�G��k4�	�G�k5�	�G�k6�	�r1 + r2 − 2r�

�e−ir3�k1−k2+k5−k6�e−ir1�k2−k3�

�e−ir2�k4−k5�e−ir�−k1−k4�e−ir��k3+k6�

= K1�r,r�� + K2�r,r�� + K�r,r�� , �A3�

where K1�r ,r�� is the part of Eq. �A3� with the integrand
proportional to r1, K2�r ,r�� is the part with the integrand
proportional to r2, and K�r ,r�� is the one with the integrand
proportional to −2r. Let us first consider K1�r ,r��. In this
term, the integrals over r2 and r3 give, respectively,
�2��3��k4−k5� and �2��3��k1−k2+k5−k6�, and the integral
over r1 gives −i�2��3�k3

��k3−k2�. We then have

K1�r,r�� =
− 4�i

��2��9
 dk1dk2dk4�G�k1�	�G�k2�	�G��k4�	

��G�k4�	�G�k1 − k2 + k4�	

� e−ir�−k1−k4�
 dk3��k3
��k3 − k2��

��G��k3�	e−ir��k3+k1−k2+k4�. �A4�

The integral over k3 is equal to −���k2
�G��k2�	�

− ir��G��k2�	�e−ir��k1+k4� and hence

K1�r,r�� =
4�i

��2��9
 dk1dk2dk4�G�k1�	�G�k2�	�G��k4�	

� �G�k4�	��k2
�G��k2�	��G�k1 − k2

+ k4�	ei�r−r���k1+k4� +
4�r�

��2��9
 dk1dk2dk4�G�k1�	

��G�k2�	�G��k4�	 � �G�k4�	�G��k2�	�G�k1 − k2

+ k4�	ei�r−r���k1+k4�. �A5�

The second term on the RHS is nothing else than
r�H�B��r ,r��, where

H�B��r,r�� =
 dr1dr2H�B��r,r1,r�,r2� . �A6�

In the first term on the RHS of Eq. �A5� we change the
variables k1→k, k2→k�, and k1+k4→q. Equation �A5� be-
comes

K1�r,r�� =
4�i

��2��9
 dkdk�dq�G�k�	�G�k��	�G��q − k�	

� �G�q − k�	��k��G
��k��	��G�q − k��	eiq�r−r��

+ r�H�B��r,r�� . �A7�

In the limit of small q, we have 1 / �2��3�dk�G�k�	�G��q
−k�	�G�q−k�	=−i�2�1−q2�2 /3� /8�k �14� and

K1�r,r�� =
1

�2��3
 dqeiq�r−r�� �

2k
�1 −

q2�2

3
�

�
1

�2��3
 dk��G�k��	�G�q − k��	��k��G
��k��	�

+ r�H�B��r,r�� . �A8�

A similar calculation gives

K2�r,r�� = −
1

�2��3
 dqeiq�r−r�� �

2k
�1 −

q2�2

3
�

�
1

�2��3
 dk��G�k��	�G�q − k��	��k��G
��k��	�

+ rH�B��r,r�� . �A9�

In addition, it follows straightforwardly from Eq. �A2� that
K�r ,r��=−2rH�B��r ,r��. Combined with Eqs. �A8� and
�A9�, this yields

r r' = r r r'r r'

r1

r2

H r'

H(A) H(B) H(C)
r2 r2 r2

r1 r1 r1
r3

r4

FIG. 4. Hikami box H�r ,r1 ,r� ,r2�. Diagrammatic notation is
the same as in Fig. 1.
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H f
�B��r,r�� = K1�r,r�� + K2�r,r�� + K�r,r��

= − �r − r��H�B��r,r�� . �A10�

The calculation of H f
�A� and H f

�C� follows the same lines. We
obtain

H f
�A��r,r�� =
 dr1dr2�r1 + r2 − 2r�H�A��r,r1,r�,r2�

= − �r − r��H�A��r,r�� �A11�

and

H f
�C��r,r�� =
 dr1dr2�r1 + r2 − 2r�H�C��r,r1,r�,r2�

= − �r − r��H�C��r,r�� . �A12�

Combining Eqs. �A10�–�A12� we find

H f�r,r�� = H f
�A��r,r�� + H f

�B��r,r�� + H f
�C��r,r��

= − �r − r��H�r,r�� , �A13�

which is Eq. �16� of the main text.

APPENDIX B

We show here that the inverse Fourier transform of Eq.
�19� with respect to q is given by Eq. �20�. As a function of
q, Eq. �19� is a sum of two terms proportional to �iq�2 and
iq, respectively. The inverse Fourier transform of iq is


 dq

�2��3 iqeiq·�r = ��r�
 dq

�2��3eiq·�r� = ��r���r� .

�B1�

Similarly, the inverse Fourier transform of �iq�2 is ��r���r�.
This leads directly to Eq. �20�.

APPENDIX C

Here we obtain Eq. �23� from the series of Eq. �22�. The
idea is to apply the operator −i	−DB�r to both sides of Eq.
�22�. The first term on the RHS is transformed into ��r
−r�� since CD�r ,r1 ,	� obeys Eq. �5�, and for each of the
next terms the first multiplier CD�r ,r1 ,	� in the integrands
is transformed into ��r−r1� for the same reason. Equation
�22� becomes

�− i	 − DB�r�C�r,r�,	�

= ��r − r�� +
4�c

�2 
 ��r − r1�X�r1,r2,	�CD�r2,r�,	�

�dr1dr2 + �4�c

�2 �2
 ��r − r1�X�r1,r2,	�CD�r2,r3,	�

� X�r3,r4,	�CD�r4,r�,	�dr1dr2dr3dr4 + ¯ . �C1�

Performing integrations over r1 we obtain

�− i	 − DB�r�C�r,r�,	�

= ��r − r�� +
4�c

�2 
 X�r,r2,	�CD�r2,r�,	�dr2

+ �4�c

�2 �2
 X�r,r2,	�CD�r2,r3,	�

� X�r3,r4,	�CD�r4,r�,	�dr2dr3dr4 + ¯ . �C2�

Now let us perform integrations over r2. We have to calcu-
late an integral

I =
4�c

�2 
 X�r,r2,	�CD�r2,r3,	�dr2, �C3�

where r3=r� for the first integral on the RHS of Eq. �C2�. To
this end, we use Eq. �21� for X�r ,r2 ,	� and obtain

I =
− �2DB

2k2 
 dr2��r · �D�r,r,	��r��r − r2��CD�r2,r3,	�

=
− �2DB

2k2 �r��D�r,r,	��r�CD�r,r3,	� , �C4�

where we integrated by parts.
Replacing each integration over r2 by this result in Eq.

�C2� we obtain

�− i	 − DB�r�C�r,r�,	�

= ��r − r�� −
�2DB

2k2 �r · �D�r,r,	��r�CD�r,r�,	�

+
4�c

�2 
 CD�r,r3,	�X�r3,r4,	�CD�r4,r�,	�dr3dr4

+ �4�c

�2 �2
 CD�r,r3,	�X�r3,r4,	�CD�r4,r5,	�

� X�r5,r6,	�CD�r6,r�,	�dr3dr4dr5dr6 + ¯� . �C5�

The infinite series in square brackets is nothing else than the
intensity Green’s function C�r ,r� ,	� as given by Eq. �22�.
Thus, Eq. �C5� leads straightforwardly to Eq. �23�.

APPENDIX D

We prove here that the proportionality between CD and
�D known in the infinite medium �14� holds in a finite me-
dium as well. Calculations being similar to those of Appen-
dix A, we only give the main ingredients of the proof. Ac-
cording to Eq. �9�, at 
r−r�
��, CD�r ,r� ,	� is given by

CD�r,r�,	� =
4�

c

 dr1dr2�G�r,r1�	�G��r,r1�	�D�r1,r2,	�

��G�r2,r��	�G��r2,r��	 . �D1�
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Similarly to Appendix A, we omit frequency arguments of
amplitude Green’s functions and set all of them equal to �0.
Because �G�r ,r1�	 is exponentially small for 
r−r1
��, the
main contribution to the integral comes from 
r−r1
, 
r�
−r2
��. This authorizes us to expand �D�r1 ,r2 ,	� in series
around �r ,r��. This expansion has to be truncated to the
same first order in 
r−r1
 and 
r�−r2
 as the expansion of Eq.
�12�:

�D�r1,r2,	� � �D�r,r�,	� + �r1 + r2 − r

− r�� · �r�D�r,r�,	� . �D2�

We then substitute Eq. �D2� into Eq. �D1�. The integral pro-
portional to �D�r ,r� ,	� is the usual result obtained in the

infinite medium. This integral equals �2 / �4�c��D�r1 ,r2 ,	�
�14�. We hence obtain

CD�r,r�,	� =
�2

4�c
�D�r,r�,	� +

4�

c
�
 dr1dr2�r1 + r2 − r

− r��
�G�r,r1�	
2
�G�r2,r��	
2��r�D�r,r�,	� .

�D3�

The integral on the RHS of Eq. �D3� can be calculated ex-
actly in the same way as H f

A, H f
B, or H f

C in Appendix A, and
it is easy to see that this integral is zero.
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